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INTRODUCTION

Laminar -flow control (LFC) has the potential for significant drag
reduction in a wide range of aerodynamic vehicle applications. The primary
objective of LFC is the achievement of extended areas of laminar flow by
delaying boundary-layer transition where the primary drag reduction benefit is
in the decrease in the skin friction. Two competing methods to apply wall
suction are the use of discrete slots or a contiguous porous skin along the
aerodynamic surface as discussed in (Refs. 1 and 2). The porous surface
provides a nearly uniform continuous suction in contrast to a series of narrow
slots which provide a discontinuous spatially localized suction distribution.

The estimation of suction quantities for LFC applications can be
calculated by assuming continuously applied suction such that the growth
factors for instability waves are below a prescribed level. Ref. 3 used
boundary-layer theory and showed that if the same amount of suction is
distributed at wide porous strips instead of continuous distribution, the
integrated amplitudes of Tollmien-Schlichting waves are essentially unchanged.
However it would be incorrect to extrapolate this result to the case of
localized suction of a slot because the upstream influence of the slot or
"sink effect" is not properly accounted for in boundary-layer calculations,
which are parabolic in nature. Ref. 4 utilized a triple deck theory to
account for the upstream effect and Ref. 5 provided experimental confirmation
of these results for wide porous strips. However, the limitations of low wall
suction velocities, an inherent assumption of the analytical development,
raises a question of the accuracy of this procedure for the case of discrete
suction through a series of multiple slots.

The first part of the present study concentrates on a comparative
examination of the growth of instability waves in a Blasius boundary-layer
flow by these two methods of wall suction. The second part of the paper
includes design criteria for suction hardware to minimize velocity
perturbations at the entrance of the slot. The slot blockage study
demonstrates that a boundary-layer instability develops downstream which may
lead to premature transition. The lower limit of this instability for a slot
blockage width equivalent to the local boundary-layer displacement thickness
represents the most restrictive criteria for the suction rate through a given
slot.
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EXPERIMENTAL CONFIGURATION

This study was conducted in the Lockheed-Georgia LTWT (Low Turbulence

Wind Tunnel) which has a 0.6m X 0.9m rectangular test section by 6.5m length.
The free stream turbulence level is of the order .02-.04% of the free stream

velocity. The flat plate depicted in Figure i has an elliptical leading edge

and is constructed of 1.27cm thick aluminum plate with dimensions 0.9m X 3.0m

length. Chordwise and spanwlse static pressure measurements were made with a

total of 32 static surface ports. The pressure gradient was set close to zero

over the test region by the adjustment of the tunnel walls with a CD variation
of +0.25%. A variable deflection trailing edge flap attached to the

downstream end of the plate controlled the leading edge stagnation line.

Three suction locations were chosen on the flat plate at x=1.22,1.525 and

1.83m from the leading edge. The suction power was provided by a radial vaned

pump attached to a vacuum chamber, where the total mass flow was maintained at

a constant value by a sonic nozzle at the entrance of the chamber. The flow

rate from each panel was controlled by a ball socket valve and monitored by a

calibrated pressure drop across a porous membrane installed in each pressure

line. To accurately measure the mean flow and the dynamic fluctuations of the

instability waves, the boundary-layer surveys were made with a computer driven
three-axis probe survey mechanism of resolution .015mm which was mounted
outside the test section of the tunnel. The hot wire anemometer used in this

study was a Disa type 55D01.
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GEOMETRY OF SLOT AND POROUS STRIP PANEL

Figure 2 shows the details of the suction chamber design, where a 2-D

slot panel or a wide porous-strlp panel was alternately installed above each

suction chamber. The porous panels were 2.3cm wide and lOmm thick and

contained electron beamed holes of diameter 0.25mm spaced in a diamond pattern

with a porosity value of 20% open. The slot panels were the same thickness

material with a saw cut of 0.25mm width. A comparison of the slot vs. wide

porous-strip data was made by replacing the slot panel with the porous panel
without altering the external boundary conditions of the experiment. The slot

dimension was 16% of the displacement thickness of the boundary layer as

compared to the porous strip width of 15.0 displacement thicknesses. The
0.38cm diameter metering holes were displaced from the centerline of the

suction chamber by 0.64cm with a pitch of 75w s. The suction chamber had a

depth of 21w s and a width of 105w s.
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COMPARISON OF MEAN BOUNDARY-LAYER PARAMETERS

From dimensional analysis, with the initial condition specified as a

Blasius profile, the change in the mean boundary-layer parameters due to

discrete wall suction can be represented by the functional relationship:

8,/e --g(yKlS*,w/8*,Rs,)

The first term represents the streamline height of the suction mass flow

far upstream of the influence of the wall suction normalized on the

displacement thickness, the second term is the non-dimenslonal width of the

wall suction, and the third term is the local Reynolds number. For low

suction rates the following expression can be derived for the first term:

yk/8 * =1.88(m)i/2; where m=wv/US*.

For the data presented in this section R_* = 2100, which corresponds to a
displacement thickness 6* =l.65mm and the unlt Reynolds number per meter of R
=1.336 X 10 +6 . The suction flow was maintained at the same value at each

streamwise station during the acquisition of the mean and RMS velocity data.

Figure 3a shows the boundary -layer shape factor comparison for slots and

porous strips for a suction value of m=.035 at successive downstream

locations. The corresponding displacement thickness variation normalized on

the reference value is shown in Figure 3b.
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COMPARISON OF LOCALIZED Cp AND SHEAR

The variation of Cp in the near vicinity of the suction region at x=l.22m

was measured by a small- static probe of diameter 0.28*. The comparison of

slot vs. wide porous strip is shown in Figure 4a for the suction parameter

m=0.035. The main difference in the two suction methods is the higher peak

value in Cp of the slot and larger adverse gradient across the slot-suction
width. The corresponding skin friction data comparison shown in Fig-

ure 4b was obtained from the mean velocity gradient of the anemometer data

at a normal distance of 0.15mm from the surface. The significant difference

is the larger magnitude of the shear near the downstream edge of the slot.
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GENERATIONOFTOLLMIEN-SCHLICHTINGWAVE

The introduction of a controlled disturbance in the boundary layer was

accomplished using the vibrating wire technique. An electromagnetically

excited stalnless-steel wire of diameter O.025mm was positioned 0.76m from the

leading edge and offset from the plate by 0.2mm spacers and allowed to freely

vibrate over a length of 0.75m (see Figure 1 previously). A two dimensional

array of permanent magnets located underneath the surface provided a constant

magnetic field and a power amplifier with a sinusoidal wave generator provided

the excitation current for the wire. A weight of 5 Newtons (I.I ibs) attached

to the wire provided the tension force, where the natural frequency of the

taught wire was measured at f=210 Hz. This arrangement allowed a constant

disturbance amplitude over a spanwise extent of length 0.5m. The measured

disturbance wave in the boundary layer is compared to linear stability theory
in Figure 5a for a dimensionless frequency of F=64.4 X I0 -°" Figure 5b shows

the corresponding mean velocity profiles.
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SPECTRALPLOTOFDELTAFUNCTIONVERSUSDISCRETEFREQUENCY

A cursory examination of the frequency which had the largest amplitude

growth over the test region was ascertained by the generation of a delta

function input to the wave generator at a frequency of 5 Hz. The anemometer

was positioned downstream of the last slot at a position in the boundary layer
of y/6* =0.6. The spectral plot of the anemometer fluctuations shown in

Figure 6a demonstrates a wide band of instability waves were amplified. The

suction test experiment wgs conducted at the relatively low non-dimensional

frequency of F=28.3 X I0-°, which corresponds to the maximum growth of the

discrete frequency of the sine wave input at 127 Hz and is shown in Figure 6b.

The maximum amplitude of the wave was maintained in the linear range over the

test section region for the duration of the experiment.
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COMPARISON OF AMPLITUDE GROWTH OF INSTABILITY WAVE

The amplitude growth of the instability wave shown in Figure 7 represents
a comparison of the porous strip versus slot for two suction quantities• The

data in this figure represent the maximum fluctuation amplitude normalized on
the maximum amplitude at (Rx)I/2 =1200. To demonstrate the effect of suction

width on the growth of the instability wave, tape of 0.05mm thickness was used
to cover 80% of the width of the porous strip. This configuration had 8 rows

of holes which were open on the porous strip panel• Figure 7 shows the
amplitude growth for three cases, namely:

a•) wide porous strip of width w/8* =15.0
b•) narrow porous strip of width w/8* =2.5
c.) and the slot of width w/8* =0.16

The effects on stability of the narrow porous strip as compared to the
slot are nearly identical.
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SUCTION HARDWARE DESIGN TO MINIMIZE PERTURBATIONS

Ref. 6 has demonstrated that premature transition of the boundary layer

can occur if there is a breakdown of the internal flow in the suction chamber.

Also, an analytical study (Ref. 7) and an experimental study (Ref. 8) have shown

nonlinear interactions between three-dimenslonal and two-dlmensional waves

which excite exponential growth rates which may lead to premature transition.

The amplitude of the three-dimenslonal waves in which the nonlinear

interaction occurs has the low nominal value of u'/U=0.01%. The frequencies

where resonance occurs are those which have significant linear growth rates

and the corresponding second harmonics and subharmonics. Therefore, from an

LFC standpoint it is desirable to minimize the perturbations from the ducting

system, since the generation of internal finite disturbances will propagate

into the external boundary-layer flow. For this study a closed loop water

tunnel was used for both flow visualization and the quantitative data reported

in the subsequent sections. The measurements were obtained with a TSI*

anemometer using a hot film probe with linearizer, and a Nicholet FFT+spectrum

analyzer was used to obtain the frequency data from the velocity fluctuations.

Figure 8a shows the parameters of the slot flow which were investigated, and

Figure 8b shows the relationship of the width of the separated region on the

parameters R s and _ which are discussed in Ref. 9.

*Thermal Systems Incorporated (TSI).

+fast Fourier transform.
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LAMINAR BUBBLE TRANSITION IN SLOT

Flow visualization using dye for a streamline marker demonstrated that

the flow separates from the leading edge of the slot and reattaches within 4.0

slot widths depending on the slot Reynolds number and the boundary-layer shear

parameter (=) as outlined in Ref. 9. For this experiment the suction chamber

was designed with large dimensions to isolate perturbations from the shear

layer flow in the slot. Velocity spectra were obtained with a boundary-layer

probe located 0.256* downstream of the slot and 0.158" from the surface. The

velocity spectra shown in Figure 9 demonstrate that transition and breakdown

of the slot laminar bubble occur at a slot Reynolds number R s =450. The peak

in the spectral data collapses to a dimensionless Strouhal frequency fa/v s
=0.038, where the length scale a is the maximum bubble width in the slot.
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SUCTION CHAMBER OSCILLATIONS

Flow visualization using dye markers for the streamlines was used to
observe the flow within the chamber below the slot. The two dimensional flow

from the slot remains as a coherent jet and impinges on the floor of the duct.

The jet then separates into two helical stuctures which are drawn into the

metering holes. A study was undertaken to examine the effect of varying the

geometry of the suction chamber on the RMS fluctuations at the mouth of the

slot with no external boundary-layer flow above the slot. The hot film probe

was positioned at the entrance of the slot. The metering holes had a pitch

P/Ws=50 with the hole Rd<1200, to minimize pertubations of the flow through
the holes. Figure I0 shows the spectral data for three geometries under

investigation. The maximum amplitude occurs at a Strouhal frequency S fw/v s
=.0135 where, at higher frequencies, the amplitudes have an exponential decay.

The minimum RMS of the oscillations for a given flow rate occurs for a chamber

depth = 17w s and chamber width = 40w s.
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METERING HOLE INSTABILITY

Flow visualization showed that laminar separation of the streamlines

occurs at the entrance of sharp -edged holes with reattachment within one

diameter. An idealized experiment was studied where a round tube of diameter

2.8cm and length of two diameters was mounted flush in the center of a flat

plate. The anemometer was positioned in the center of the exit hole and

spectral data were taken at various suction rates. For this case the laminar

separation bubble transitioned at Rdm2000. The data In Figure II shows a well

defined spectral peak at a Strouhal frequency fd/u=0.81. At larger R d a wider

spectrum of fluctuations occurs as breakdown of the separation bubble

encompasses a wider physical dimension of the core flow. Since these data were
taken in an environment with no turbulence at the entrance flow it is

recommended that for LFC applications Rd<1500.
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SLOT BLOCKAGE INSTABILITY

Ref. i0 has shown that a three-dimensional boundary-layer instability

from a single row of suction holes will cause premature transition above a

given suction rate. Blockage in the slot is analogous to the suction hole
instability in that the mean boundary layer develops a strong spanwise
gradient of vorticity adjacent to the obstruction in the slot. The three-,
dimensional instability growth rate will be dependent on the slot blockage

width w b and the value Rk= UkYk/U which can be expressed in terms of the slot
Reynolds number by the relationship Rk=2.0R s. For the blockage study, a thin
rectangular shim was placed flush across the slot width of dimensions w b

/ws=l.3 with an approaching boundary-layer displacement thickness of 6" = 1.5

w s and with a free stream R6"=1300.
Flow visualization confirmed that the boundary-layer vorticity coalesced

behind the blocked region and was convected downstream with a discrete

frequency when the slot Rs>200. To explore this instability further the hot

film probe was positioned downstream of the blocked region at x/8"=20 at a

vertical displacement of y/8* =i.0. The suction rate was varied and the

velocity fluctuations were recorded and are shown in Figure 12.

The spectral results show a large fundamental frequency with higher
harmonics which demonstrate the pulse like nature of the instability for R s

>200. For Rs>300 the amplitude of the instability wave is sufficient for
immlnent transition downstream. The fundamental disturbance has a well

defined Strouhal frequency of fYk/U_=0.036. In most cases this frequency is
outside the Tollmien-Schlichting neutral stability curve and is therefore

highly damped. However, at a slot Rs=ll0 the velocity perturbations are

significant and may interact with the Tollmlen-Schlichting instability. The

spectral data show that for Rs<75 the slot blockage instability has a

negligible growth rate.
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CONCLUSIONS

Detailed mean velocity and disturbance amplitude measurements were

conducted in a Blasius boundary-layer flow with wall suction applied at three

downstream locations. The main emphasis of this study was a direct comparison

of the growth rate of the instability wave with discrete spanwise slots versus

wide porous strips. The results demonstrate that the local effects of suction

through slots or very narrow porous strips have a greater beneficial effect on

the stablity of the boundary-layer flow relative to the suction influence of a

wide porous strip.

Codes which use continuous suction for the growth rates of the

instability waves to determine the suction quantities for a multiple series of

slots will be quite conservative in the estimation of the suction quantity.

To accurately determine the mean boundary-layer changes from a narrow suction

strip the "sink" effect of the local suction must be accounted for in the

neighborhood of the slot. This has been demonstrated in the Navler-Stokes

analysis of Ref. ll.

The second part of the paper concerned an experimental study to provide

guidelines for suction-chamber design and flow rates to minimize internal

oscillations which propagate into the boundary-layer flow. Based on this

study, the following observations are summarized:

. The flow inside the slot has a characteristic inflectional profile

due to the presence of a separation bubble, which reattaches within

four slot widths. The experimental data show that the resulting

shear-layer transitions at Rs>450.

. Oscillations from the suction chamber below the slot exit are caused

from the two-dimensional jet interactions at the boundaries of the

suction chamber. The velocity perturbations at the slot entrance can

be minimized by a suction chamber of depth=17w s and width=40w s.

. The flow into the metering hole has a separated region which

reattaches within one diameter. The perturbations of the entrance

velocity becomes significant for Rd>2000. For LFC applications it is

recommended that Rd<1500.

, Localized slot blockage from any external debris in the environment

causes a mean spanwlse gradient of vorticity in the boundary layer

downstream of the blocked region. The local three-dimensional

boundary-layer instability which results for Wb/6* = 1.0 has large

amplitude growths for R_>II0 with imminent transition at RS>300. The

blockage instability _as negligible growth rates for Rs<75.

Therefore, the suction Reynolds number Rs<75 represents the upper
limit to desensitize the three-dimenslonal instability for

intermittent blockage of the slot during flight.
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LIST OF SYMBOLS

a laminar separation bubble leDgth scale inside slot

defined as (Po - P_)/1/2p U® zP diameter of metering hole

f frequency
F dimensionless stability parameter 2_fu/U_ 2

m suction parameter v w/U6*

p pitch of metering holes

P. free steam static pressure

Po surface static pressure
R unit Reynolds number U./u

Rk defined as UkYk/U

Rx Reynolds number U_x/u

Rs slot Reynolds number WWs/V

Rd hole Reynolds number v]/v

R_* displacement thickness Reynolds number U_8*/_
S Strouhal frequency

U mean velocity in boundary layer

U_ free Stream velocity :
u' velocity fluctuation

RHS of velocity fluctuation

Uk streamline velocity upstream of suction influence
v average suction velocity at surface

v' velocity fluctuation
w width dimension of"wall suction

x streamwise coordinate

y normal coordinate_to - surface ......

Yk streamline coordinate upstream of suction influence

dimensionless velocity gradient parameter 6U/6y (Ws/V s)
6* displacement thickness

y(U_Jvx) I/2
8 momentum thickness

v kinematic viscosity

p density
shear stress

SUBSCRIPTS

b blockage
d metering hole
k suction streamline parameter in the boundary layer
o reference value

s slot :: _ :

free stream
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